Chapter 3: Complex Analysis

Pablo M. Berná
Universidad Europea de Madrid

If you try to solve the equation

$$
x^{2}+c^{2}=0
$$

the solution is of the form

$$
x=\frac{ \pm \sqrt{-4 c^{2}}}{2} .
$$

Of course, this number is not real!
To try to give a solution in that problem, Euler defined the imaginary unit:

$$
i=\sqrt{-1}
$$

Using this unit,

$$
x= \pm i
$$

We can define the complex field as the collection of the complex numbers $z=a+b i:$

$$
\mathbb{C}=\{z=a+b i: a, b \in \mathbb{R}\} .
$$

A complex number can be written as:

- $z=a+i b$ (binomial form).
- $z=(a, b)$ (Cartesian form).
- $z=r_{\alpha}$ (Polar form), $r=\sqrt{a^{2}+b^{2}}, \alpha=\arctan (b / a)$.

Given a complex number $z=a+b i$, we say that a and b are the real and complex part of z :

$$
\operatorname{Re}(z)=a, \quad \operatorname{Im}(z)=b
$$

We say that two complex numbers z_{1}, z_{2} are equal if

$$
\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right), \text { and } \operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)
$$

Of course, \mathbb{R} is a subset of \mathbb{C} since each real number x could be written as $z=x+0 i \in \mathbb{C}$.

We say that $z \in \mathbb{C}$ is pure imaginary if $\operatorname{Re}(z)=0$.

As in the real field \mathbb{R}, we can define the sum and product of two complex numbers: if $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$,

$$
\begin{gathered}
z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right) . \\
z_{1} z_{2}=\left(a_{1}+i b_{i}\right)\left(a_{2}+i b_{2}\right)=\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(a_{1} b_{2}+b_{1} a_{2}\right) .
\end{gathered}
$$

For the sum:

- Commutative: $z_{1}+z_{2}=z_{2}+z_{1}$.
- Associative: $\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)$.
- Neutral element: $z+0=0+z=z$, where $0=0+i 0$.
- Opposite element: $z+(-z)=0$, where $-z=-a-i b$ if $z=a+b i$.

For the product:

- Commutative: $z_{1} z_{2}=z_{2} z_{1}$.
- Associative: $\left(z_{1} z_{2}\right) z_{3}=z_{1}\left(z_{2} z_{3}\right)$.
- Neutral element: $z \cdot 1=z$, where $1=1+i 0$.
- Reverse element: $z z^{-1}=1$, where, if $z=a+b i$,

$$
z^{-1}=\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}} .
$$

- Distributive of the product with respect to the sum:

$$
z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3} .
$$

The conjugate of a complex number

Given a complex number $z=a+b i$, the conjugate is

$$
\bar{z}=a-b i .
$$

Thanks to this number, we can see the inverse of a complex number:

$$
z^{-1}=\frac{1}{z}=\frac{\bar{z}}{z \bar{z}} .
$$

Then, $z z^{-1}=1$.

- $\operatorname{lm}(z)=0$ if and only if $z=\bar{z}$.
- z is pure imaginary if and only if $z=-\bar{z}$.

Modulus of a complex number

As we have said at the beginning, we can write $z=a+i b$ as (a, b), so we can have a correspondence between \mathbb{C} and \mathbb{R}^{2} :

$$
\mathbb{C} \rightarrow \mathbb{R}^{2}
$$

where for each $z=a+i b \in \mathbb{C}$, we have the correspondent vector (a, b).Also, thanks to this correspondence, we also can define the modulus as $|z|=\sqrt{z \bar{z}}=\sqrt{a^{2}+b^{2}}$.

In the case when za $+i 0,|z|=\sqrt{a^{2}}=|a|$ we recover the usual absolute value.

Properties about the modulus

- $|z|=0$ if and only if $z=0$.
- $|z|=|-z|=|-\bar{z}|$.
- $|z w|=|z||w|$.
- $\left|z^{-1}\right|=1 /|z|$.
-

$$
\left|\frac{z}{w}\right|=\frac{|z|}{|w|}
$$

- $|\operatorname{Re}(z)| \leq|z|$ and $|\operatorname{lm}(z)| \leq|z|$.
- $|z+w| \leq|z|+|w|$.

Given the following numbers:

$$
z_{1}=1-2 i, z_{2}=-2+i, z_{3}=3+5 i,
$$

calculate:

- $z_{1}-z_{3}$.
- z_{2}^{-1}.
- $z_{1}\left(z_{2}+\overline{z_{3}}\right)$.
- $\frac{z_{1}}{z_{3}}$.
- $z_{3} \overline{z_{3}}$.
- $\left|z_{2}\right|$.

